Biology Chapter 12: History of Life on Earth Chapter Objectives:

How did life begin The age of Earth Formation of the basic chemical of life Precursors of the first cells

19. Invertebrate

21. DNA

22. RNA

23. Proteins

model

(23. Bubble model

26. Miller-Urev

model

20 Continental drift

24. Primordial soup

- The evolution of cellular life
 The evolution of prokaryotes
 The evolution of eukaryotes
 Multicellularity
 Mass extinctions
- <u>Life invaded the land</u>
 The ozone layer
 Plants and fungi on land
 Arthropods

Vertebrates

Vocabulary

- Radiometric
- dating
- 2) Radioisotope
- 3./ Half-life
- 4. Microsphere
- 5. Fossil
- 6. Cynobacteria
- 7. Eubacteria
- 8. Archaebacteria
- 9. Endosymbiosis
- 10. Protest
- 11.)Extinction
- 12) Mass extinction
- 13. Mitochondria
- 14. Chloroplasts
- 15. Mycorrhizae
- 16. Mutualism
- 17. Arthropod
- 18. Vertebrate

At the end of this unit, you should be able to:

- Summarize how radioisotopes can be used in determining Earth's age
- Compare two models that describe how the chemicals of life originated
- Describe how cellular organization might have begun
- Recognize the importance that a mechanism for heredity has to the development of life
- Distinguish between the two groups of prokaryotes
- Describe the evolution of eukaryotes
- Recognize an evolutionary advance first seen in protists
- Summarize how mass extinctions have affected the evolution of life on Earth
- Relate the development of ozone to the adaptation of life to the land
- Identify the first Multicellular organisms to live on land
- · Name the first animals to live on land
- Explain the relationship between plants and fossil fuels
- List the first vertebrates to leave the oceans